Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
2.
mSystems ; 9(3): e0096723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323850

RESUMO

The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Nitritos/metabolismo , Ecossistema , Desnitrificação , Bactérias/metabolismo , Hidroxilamina , Nitrito Redutases/metabolismo , Nitrogênio , Hidroxilaminas , Sulfatos
3.
Environ Microbiol ; 26(2): e16565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356112

RESUMO

Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.


Assuntos
Ácido Acético , Sulfatos , Reatores Biológicos , Ácidos , Ácidos Graxos , Lipídeos de Membrana
4.
Water Res ; 252: 121240, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330717

RESUMO

Glycans are crucial for the structure and function of anaerobic granular sludge in wastewater treatment. Yet, there is limited knowledge regarding the microorganisms and biosynthesis pathways responsible for glycan production. In this study, we analysed samples from anaerobic granular sludges treating papermill and brewery wastewater, examining glycans composition and using metagenome-assembled genomes (MAGs) to explore potential biochemical pathways associated with their production. Uronic acids were the predominant constituents of the glycans in extracellular polymeric substances (EPS) produced by the anaerobic granular sludges, comprising up to 60 % of the total polysaccharide content. MAGs affiliated with Anaerolineacae, Methanobacteriaceae and Methanosaetaceae represented the majority of the microbial community (30-50 % of total reads per MAG). Based on the analysis of MAGs, it appears that Anaerolinea sp. and members of the Methanobacteria class are involved in the production of exopolysaccharides within the analysed granular sludges. These findings shed light on the functional roles of microorganisms in glycan production in industrial anaerobic wastewater treatment systems.


Assuntos
Metagenoma , Esgotos , Esgotos/química , Anaerobiose , Águas Residuárias , Polissacarídeos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos
5.
Appl Microbiol Biotechnol ; 108(1): 127, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229305

RESUMO

For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 µm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.


Assuntos
Deltaproteobacteria , Euryarchaeota , Homosserina/metabolismo , Euryarchaeota/metabolismo , Polissacarídeos/metabolismo , Lactonas/metabolismo , Metano/metabolismo
6.
Biotechnol Bioeng ; 121(4): 1325-1335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265153

RESUMO

Syngas fermentation has gained momentum over the last decades. The cost-efficient design of industrial-scale bioprocesses is highly dependent on quantitative microbial growth data. Kinetic and stoichiometric models for syngas-converting microbes exist, but accurate experimental validation of the derived parameters is lacking. Here, we describe a novel experimental approach for measuring substrate uptake kinetics of gas-fermenting microbes using the model microorganism Clostridium autoethanogenum. One-hour disturbances of a steady-state chemostat bioreactor with increased CO partial pressures (up to 1.2 bar) allowed for measurement of biomass-specific CO uptake- and CO2 production rates ( q CO ${q}_{{CO}}$ , q CO 2 ${q}_{{{CO}}_{2}}$ ) using off-gas analysis. At a pCO of 1.2 bar, a q CO ${q}_{{CO}}$ of -119 ± 1 mmol g-1 X h-1 was measured. This value is 1.8-3.5-fold higher than previously reported experimental and kinetic modeling results for syngas fermenters. Analysis of the catabolic flux distribution reveals a metabolic shift towards ethanol production at the expense of acetate at pCO ≥ $\ge $ 0.6 atm, likely to be mediated by acetate availability and cellular redox state. We characterized this metabolic shift as acetogenic overflow metabolism. These results provide key mechanistic understanding of the factors steering the product spectrum of CO fermentation in C. autoethanogenum and emphasize the importance of dedicated experimental validation of kinetic parameters.


Assuntos
Monóxido de Carbono , Gases , Monóxido de Carbono/metabolismo , Fermentação , Clostridium/metabolismo , Acetatos/metabolismo
7.
Microb Biotechnol ; 16(11): 2082-2093, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814497

RESUMO

The Wood-Ljungdahl pathway is an ancient metabolic route used by acetogenic carboxydotrophs to convert CO into acetate, and some cases ethanol. When produced, ethanol is generally seen as an end product of acetogenic metabolism, but here we show that it acts as an important intermediate and co-substrate during carboxydotrophic growth of Clostridium autoethanogenum. Depending on CO availability, C. autoethanogenum is able to rapidly switch between ethanol production and utilization, hereby optimizing its carboxydotrophic growth. The importance of the aldehyde ferredoxin:oxidoreductase (AOR) route for ethanol production in carboxydotrophic acetogens is known; however, the role of the bifunctional alcohol dehydrogenase AdhE (Ald-Adh) route in ethanol metabolism remains largely unclear. We show that the mutant strain C. autoethanogenum ∆adhE1a, lacking the Ald subunit of the main bifunctional aldehyde/alcohol dehydrogenase (AdhE, CAETHG_3747), has poor ethanol oxidation capabilities, with a negative impact on biomass yield. This indicates that the Adh-Ald route plays a major role in ethanol oxidation during carboxydotrophic growth, enabling subsequent energy conservation via substrate-level phosphorylation using acetate kinase. Subsequent chemostat experiments with C. autoethanogenum show that the wild type, in contrast to ∆adhE1a, is more resilient to sudden changes in CO supply and utilizes ethanol as a temporary storage for reduction equivalents and energy during CO-abundant conditions, reserving these 'stored assets' for more CO-limited conditions. This shows that the direction of the ethanol metabolism is very dynamic during carboxydotrophic acetogenesis and opens new insights in the central metabolism of C. autoethanogenum and similar acetogens.


Assuntos
Álcool Desidrogenase , Clostridium , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Clostridium/genética , Clostridium/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Etanol/metabolismo
8.
Synth Syst Biotechnol ; 8(4): 629-639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823039

RESUMO

Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilibrium. While stoichiometric analyses and genetic modifications are frequently employed in metabolic engineering, the use of thermodynamic tools to evaluate the feasibility of planned interventions is less documented. In this study, we propose a novel metabolic engineering strategy to achieve an efficient anaerobic production of poly-(R)-3-hydroxybutyrate (PHB) in the model organism Escherichia coli. Our approach involves re-routing of two-thirds of the glycolytic flux through non-oxidative glycolysis and coupling PHB synthesis with NADH re-oxidation. We complemented our stoichiometric analysis with various thermodynamic approaches to assess the feasibility and the bottlenecks in the proposed engineered pathway. According to our calculations, the main thermodynamic bottleneck are the reactions catalyzed by the acetoacetyl-CoA ß-ketothiolase (EC 2.3.1.9) and the acetoacetyl-CoA reductase (EC 1.1.1.36). Furthermore, we calculated thermodynamically consistent sets of kinetic parameters to determine the enzyme amounts required for sustaining the conversion fluxes. In the case of the engineered conversion route, the protein pool necessary to sustain the desired fluxes could account for 20% of the whole cell dry weight.

9.
Environ Res ; 239(Pt 2): 117376, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832766

RESUMO

Most of methane (CH4) emissions contain low CH4 concentrations and typically occur at irregular intervals, which hinders the implementation and performance of methane abatement processes. This study aimed at understanding the metabolic mechanisms that allow methane oxidizing bacteria (MOB) to survive for long periods of time under methane starvation. To this aim, we used an omics-approach and studied the diversity and metabolism of MOB and non-MOB in bioreactors exposed to low CH4 concentrations under feast-famine cycles of 5 days and supplied with nutrient-rich broth. The 16S rRNA and the pmoA transcripts revealed that the most abundant and active MOB during feast and famine conditions belonged to the alphaproteobacterial genus Methylocystis (91-65%). The closest Methylocystis species were M. parvus and M. echinoides. Nitrifiers and denitrifiers were the most representative non-MOB communities, which likely acted as detoxifiers of the system. During starvation periods, the induced activity of CH4 oxidation was not lost, with the particulate methane monooxygenase of alphaproteobacterial MOB playing a key role in energy production. The polyhydroxyalkanoate and nitrification metabolisms of MOB had also an important role during feast-famine cycles, maintaining cell viability when CH4 concentrations were negligible. This research shows that there is an emergence and resilience of conventional alphaproteobacterial MOB, being the genus Methylocystis a centrepiece in environments exposed to dilute and intermittent methane emissions. This knowledge can be applied to the operation of bioreactors subjected to the treatment of dilute and discontinuous emissions via controlled bioaugmentation.


Assuntos
Reatores Biológicos , Metano , RNA Ribossômico 16S/genética , Oxirredução , Microbiologia do Solo
10.
Sci Rep ; 13(1): 17370, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833311

RESUMO

Hexanoate is a valuable chemical that can be produced by microorganisms that convert short-chain- to medium-chain carboxylic acids through a process called chain elongation. These microorganisms usually produce mixtures of butyrate and hexanoate from ethanol and acetate, but direct conversion of ethanol to hexanoate is theoretically possible. Steering microbial communities to ethanol-only elongation to hexanoate circumvents the need for acetate addition and simplifies product separation. The biological feasibility of ethanol elongation to hexanoate was validated in batch bioreactor experiments with a Clostridium kluyveri-dominated enrichment culture incubated with ethanol, acetate and butyrate in different ratios. Frequent liquid sampling combined with high-resolution off-gas measurements allowed to monitor metabolic behavior. In experiments with an initial ethanol-to-acetate ratio of 6:1, acetate depletion occurred after ± 35 h of fermentation, which triggered a metabolic shift to direct conversion of ethanol to hexanoate despite the availability of butyrate (± 40 mCmol L-1). When only ethanol and no external electron acceptor was supplied, stable ethanol to hexanoate conversion could be maintained until 60-90 mCmol L-1 of hexanoate was produced. After this, transient production of either acetate and butyrate or butyrate and hexanoate was observed, requiring a putative reversal of the Rnf complex. This was not observed before acetate depletion or in presence of low concentrations (40-60 mCmol L-1) of butyrate, suggesting a stabilizing or regulatory role of butyrate or butyrate-related catabolic intermediates. This study sheds light on previously unknown versatility of chain elongating microbes and provides new avenues for optimizing (waste) bioconversion for hexanoate production.


Assuntos
Caproatos , Etanol , Caproatos/metabolismo , Etanol/metabolismo , Ácidos Carboxílicos , Butiratos/metabolismo , Acetatos/metabolismo , Fermentação
11.
Environ Sci Technol ; 57(35): 13217-13225, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37604486

RESUMO

Anaerobic and aerobic granular sludge processes are widely applied in wastewater treatment. In these systems, microorganisms grow in dense aggregates due to the production of extracellular polymeric substances (EPS). This study investigates the sialylation and sulfation of anionic glyconconjugates in anaerobic and aerobic granular sludges collected from full-scale wastewater treatment processes. Size exclusion chromatography revealed a wide molecular weight distribution (3.5 to >5500 kDa) of the alkaline-extracted EPS. The high-molecular weight fraction (>5500 kDa), comprising 16.9-27.4% of EPS, was dominant with glycoconjugates. Mass spectrometry analysis and quantification assays identified nonulosonic acids (NulOs, e.g., bacterial sialic acids) and sulfated groups contributing to the negative charge in all EPS fractions. NulOs were predominantly present in the high-molecular weight fraction (47.2-84.3% of all detected NulOs), while sulfated glycoconjugates were distributed across the molecular weight fractions. Microorganisms, closely related to genera found in the granular sludge communities, contained genes responsible for NulO and sulfate group synthesis or transfer. The similar distribution patterns of sialylation and sulfation of the anionic glycoconjugates in the EPS samples indicate that these two glycoconjugate modifications commonly occur in the EPS of aerobic and anaerobic granular sludges.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Peso Molecular , Glicoconjugados , Sulfatos , Óxidos de Enxofre
12.
Artigo em Inglês | MEDLINE | ID: mdl-37234030

RESUMO

Strain AMPT has been previously suggested as a strain of the species Moorella thermoacetica Jiang et al. 2009 (based on the high 16S rRNA gene identity, 98.3 %). However, genome-based phylogenetic analysis of strain AMPT reveals that this bacterium is in fact a novel species of the genus Moorella. Genome relatedness indices between strain AMPT and Moorella thermoacetica DSM 521T were below the minimum threshold values required to consider them members of the same species (digital DNA-DNA hybridization, 52.2 % (<70%); average nucleotide identity, 93.2 % (<95%)). Based on phylogenetic and phenotypic results we recommend that strain AMPT (DSM 21394T=JCM 35360T) should be classified as representing new species, for which we propose the name Moorella caeni sp. nov.


Assuntos
Moorella , Moorella/genética , Ácidos Graxos/química , Esgotos/microbiologia , Metanol , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA
13.
Biotechnol Biofuels Bioprod ; 16(1): 83, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194097

RESUMO

BACKGROUND: Dilute ethanol streams generated during fermentation of biomass or syngas can be used as feedstocks for the production of higher value products. In this study, we describe a novel synthetic microbial co-culture that can effectively upgrade dilute ethanol streams to odd-chain carboxylic acids (OCCAs), specifically valerate and heptanoate. The co-culture consists of two strict anaerobic microorganisms: Anaerotignum neopropionicum, a propionigenic bacterium that ferments ethanol, and Clostridium kluyveri, well-known for its chain-elongating metabolism. In this co-culture, A. neopropionicum grows on ethanol and CO2 producing propionate and acetate, which are then utilised by C. kluyveri for chain elongation with ethanol as the electron donor. RESULTS: A co-culture of A. neopropionicum and C. kluyveri was established in serum bottles with 50 mM ethanol, leading to the production of valerate (5.4 ± 0.1 mM) as main product of ethanol-driven chain elongation. In a continuous bioreactor supplied with 3.1 g ethanol L-1 d-1, the co-culture exhibited high ethanol conversion (96.6%) and produced 25% (mol/mol) valerate, with a steady-state concentration of 8.5 mM and a rate of 5.7 mmol L-1 d-1. In addition, up to 6.5 mM heptanoate was produced at a rate of 2.9 mmol L-1 d-1. Batch experiments were also conducted to study the individual growth of the two strains on ethanol. A. neopropionicum showed the highest growth rate when cultured with 50 mM ethanol (µmax = 0.103 ± 0.003 h-1) and tolerated ethanol concentrations of up to 300 mM. Cultivation experiments with C. kluyveri showed that propionate and acetate were used simultaneously for chain elongation. However, growth on propionate alone (50 mM and 100 mM) led to a 1.8-fold reduction in growth rate compared to growth on acetate. Our results also revealed sub-optimal substrate use by C. kluyveri during odd-chain elongation, where excessive ethanol was oxidised to acetate. CONCLUSIONS: This study highlights the potential of synthetic co-cultivation in chain elongation processes to target the production of OCCAs. Furthermore, our findings shed light on to the metabolism of odd-chain elongation by C. kluyveri.

14.
Bioresour Technol ; 374: 128753, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801441

RESUMO

This study explores a novel conversion of CO2 into the chemicals hydroxyectoine and ectoine, which are compounds with high retail values in the pharmaceutical industry. Firstly, 11 species of microbes able to use CO2 and H2 and that have the genes for ectoines synthesis (ectABCD) were identified through literature search and genomic mining. Laboratory tests were then conducted to ascertain the capacity of these microbes to produce ectoines from CO2. Results showed that the most promising bacteria for CO2 to ectoines bioconversion areHydrogenovibrio marinus, Rhodococcus opacus, and Hydrogenibacillus schlegelii.Upon salinity and H2/CO2/O2 ratio optimization,H. marinus accumulated 85 mg of ectoine g biomass-1. Interestingly, R.opacusand H. schlegelii mainly produced hydroxyectoine (53 and 62 mg g biomass-1), which has a higher commercial value. Overall, these results constitute the first proof of a novel valorization platform of CO2 and lay the foundation for a new economic niche aimed at CO2 recircularization into pharmaceuticals.


Assuntos
Diamino Aminoácidos , Dióxido de Carbono , Hidrogênio , Bactérias , Diamino Aminoácidos/química , Diamino Aminoácidos/genética
15.
Microb Biotechnol ; 16(4): 697-705, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36632026

RESUMO

Carboxydotrophic metabolism is gaining interest due to its applications in gas fermentation technology, enabling the conversion of carbon monoxide to fuels and commodities. Acetogenic carboxydotrophs play a central role in current gas fermentation processes. In contrast to other energy-rich microbial substrates, CO is highly toxic, which makes it a challenging substrate to utilize. Instantaneous scavenging of CO upon entering the cell is required to mitigate its toxicity. Experiments conducted with Clostridium autoethanogenum at different biomass-specific growth rates show that elevated ethanol production occurs at increasing growth rates. The increased allocation of electrons towards ethanol at higher growth rates strongly suggests that C. autoethanogenum employs a form of overflow metabolism to cope with high dissolved CO concentrations. We argue that this overflow branch enables acetogens to efficiently use CO at highly variable substrate influxes by increasing the conversion rate almost instantaneously when required to remove toxic substrate and promote growth. In this perspective, we will address the case study of C. autoethanogenum grown solely on CO and syngas mixtures to assess how it employs acetate reduction to ethanol as a form of overflow metabolism.


Assuntos
Acetatos , Monóxido de Carbono , Monóxido de Carbono/metabolismo , Fermentação , Acetatos/metabolismo , Etanol/metabolismo , Termodinâmica
16.
Microb Cell Fact ; 21(1): 243, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419165

RESUMO

BACKGROUND: Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates. RESULTS: We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium. CONCLUSIONS: This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.


Assuntos
Etanol , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Ésteres , Carbono
17.
Appl Environ Microbiol ; 88(13): e0039122, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35699440

RESUMO

Syntrophic anaerobic consortia comprised of fatty acid-degrading bacteria and hydrogen/formate-scavenging methanogenic archaea are of central importance for balanced and resilient natural and manufactured ecosystems: anoxic sediments, soils, and wastewater treatment bioreactors. Previously published studies investigated interaction between the syntrophic bi-cultures, but little information is available on the influence of fermentative bacteria on syntrophic fatty acid oxidation, even though fermentative organisms are always present together with syntrophic partners in the above-mentioned ecosystems. Here, we present experimental observations of stimulated butyrate oxidation and methane generation by a coculture of Syntrophomonas wolfei with any of the following methanogens: Methanospirillum hungatei, Methanobrevibacter arboriphilus, or Methanobacterium formicicum due to the addition of a fermentative Trichococcus flocculiformis strain ES5. The addition of T. flocculiformis ES5 to the syntrophic cocultures led to an increase in the rates of butyrate consumption (120%) and volumetric methane production (150%). Scanning electron microscopy of the most positively affected coculture (S. wolfei, M. hungatei, and T. flocculiformis ES5) revealed a tendency of T. flocculiformis ES5 to aggregate with the syntrophic partners. Analysis of coculture's proteome with or without addition of the fermentative bacterium points to a potential link with signal transducing systems of M. hungatei, as well as activation of additional butyryl coenzyme A dehydrogenase and an electron transfer flavoprotein in S. wolfei. IMPORTANCE Results from the present study open doors to fascinating research on complex microbial cultures in anaerobic environments (of biotechnological and ecological relevance). Such studies of defined mixed populations are critical to understanding the highly intertwined natural and engineered microbial systems and to developing more reliable and trustable metabolic models. By investigating the existing cultured microbial consortia, like the ones described here, we can acquire knowledge on microbial interactions that go beyond "who feeds whom" relations but yet benefit the parties involved. Transfer of signaling compounds and stimulation of gene expression are examples of indirect influence that members of mixed communities can exert on each other. Understanding such microbial relationships will enable development of new sustainable biotechnologies with mixed microbial cocultures and contribute to the general understanding of the complex natural microbial interactions.


Assuntos
Euryarchaeota , Methanospirillum , Bactérias/genética , Butiratos/metabolismo , Carnobacteriaceae , Clostridiales , Técnicas de Cocultura , Ecossistema , Euryarchaeota/metabolismo , Metano/metabolismo , Methanospirillum/metabolismo
18.
Microb Cell Fact ; 21(1): 116, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710409

RESUMO

BACKGROUND: Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS: Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS: The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.


Assuntos
Clostridium , Propionatos , Acrilatos/metabolismo , Clostridiales , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Ácido Láctico/metabolismo , Propionatos/metabolismo
19.
Front Microbiol ; 13: 816605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391737

RESUMO

In acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.

20.
Environ Sci Technol ; 56(8): 4749-4775, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357187

RESUMO

Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Lipídeos , Metano/metabolismo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...